Bloque 2 Modelos más avanzados
Parte 1 Modelos de ocupación (site-occupancy models)

IREC, 14/05/2024
Javier Fernández-López, Valentin Lauret
\[~\] \[~\] \[~\] \[~\] \[~\] \[~\]

2024-05-15

En el menú…

  • Día 1:
    • Modelos Generalizados Lineales con R: Distribuciones de probabilidad, programación básica, simulaciones y modelos en ecología.
    • Intrducción al análisis Bayesiano con NIMBLE: Inferencia Bayesiana, NIMBLE y modelos en ecología
  • Día 2:
    • Modelos de ocupación: Detectabilidad imperfecta y probabilidad de presencia
    • Modelos N-mixture: Detectabilidad imperfecta y abundancia
    • Modelos de Captura-Recaptura espaciales (SCR)
  • Día 3:
    • Caso de estudio con Pepe Jiménez
    • Trabajo personal con datos propios

Ayer…

\[~\] Podemos crear un modelo para relacionar el número de excrementos de corzo con la temperatura en cada cuadrícula. ¿Qué distribución podría utilizar?

\[~\]

\[\begin{equation} N_i \sim Poisson(\lambda_i) \end{equation}\] \[\begin{equation} log(\lambda_i) = \beta_0 + \beta_1Temperatura_i \end{equation}\]

En vez de contar excrementos, hoy vamos a anotar únicamente la presencia/ausencia de corzos en cada una de nuestras unidades muestrales, anotando la temperatura en cada una de ellas como variable predictora.

En vez de contar excrementos, hoy vamos a anotar únicamente la presencia/ausencia de corzos en cada una de nuestras unidades muestrales, anotando la temperatura en cada una de ellas como variable predictora.

\[~\]

\[\begin{equation} Y_i \sim Bernoulli(p_i) \end{equation}\]
\[\begin{equation} p_i = \beta_0 + \beta_1Temperatura_i \end{equation}\]

En vez de contar excrementos, hoy vamos a anotar únicamente la presencia/ausencia de corzos en cada una de nuestras unidades muestrales, anotando la temperatura en cada una de ellas como variable predictora.

\[\begin{equation} Y_i \sim Bernoulli(p_i) \end{equation}\] \[\begin{equation} logit(p_i) = \beta_0 + \beta_1Temperatura_i \end{equation}\]
     presencia temp
1            0  1.2
2            1  2.5
3            1  4.9
4            1  8.9
5            0  0.4
6            1  8.8
7            1  9.3
8            1  5.9
9            1  5.5
10           0 -1.3
11           0  0.5
12           0  0.1
13           1  6.2
14           0  2.6
15           1  7.2
16           1  4.0
17           1  6.6
18           1  9.9
19           1  2.6
20           1  7.3
21           1  9.2
22           0  0.5
23           1  5.8
24           0 -0.5
25           0  1.2
26           0  2.6
27           0 -1.8
28           1  2.6
29           1  8.4
30           1  2.1
31           1  3.8
32           1  5.2
33           1  3.9
34           0  0.2
35           1  7.9
36           1  6.0
37           1  7.5
38           0 -0.7
39           1  6.7
40           1  2.9
41           1  7.9
42           1  5.8
43           1  7.4
44           1  4.6
45           1  4.4
46           1  7.5
47           0 -1.7
48           1  3.7
49           1  6.8
50           1  6.3
51           1  3.7
52           1  8.3
53           1  3.3
54           0  0.9
55           0 -1.2
56           0 -0.8
57           0  1.8
58           1  4.2
59           1  5.9
60           1  2.9
61           1  9.0
62           1  1.5
63           1  3.5
64           0  2.0
65           1  5.8
66           0  1.1
67           1  3.7
68           1  7.2
69           0 -1.0
70           1  8.5
71           0  2.1
72           1  8.1
73           0  2.2
74           0  2.0
75           1  3.7
76           1  8.7
77           1  8.4
78           1  2.7
79           1  7.3
80           1  9.5
81           1  3.2
82           1  6.6
83           1  2.8
84           0  1.9
85           1  7.1
86           0  0.4
87           1  6.5
88           0 -0.5
89           0  0.9
90           0 -0.3
91           0  0.9
92           0 -1.3
93           1  5.7
94           1  8.5
95           1  7.3
96           1  7.6
97           1  3.5
98           1  2.9
99           1  7.7
100          1  5.3
101          1  5.9
102          0  2.2
103          0  1.2
104          1  9.9
105          1  5.6
106          0  0.6
107          0 -0.4
108          1  3.7
109          1  9.1
110          1  5.2
111          1  9.7
112          1  6.8
113          0  2.3
114          1  3.2
115          0 -0.2
116          0 -1.8
117          1  6.6
118          0 -0.8
119          1  3.4
120          1  5.7
121          1  9.9
122          1  3.9
123          1  3.8
124          0  0.1
125          1  7.1
126          0  3.4
127          1  4.1
128          0  0.5
129          0  0.7
130          1  5.1
131          1  4.9
132          0 -1.1
133          0 -1.6
134          1  5.7
135          1  9.1
136          1  5.2
137          1  4.7
138          1  4.3
139          1  9.8
140          1  4.1
141          1  6.2
142          1  5.2
143          0  0.9
144          0  1.1
145          1  6.8
146          1  3.4
147          0  0.1
148          1  7.0
149          0 -0.7
150          1  8.4
151          1  5.4
152          1  4.7
153          0  1.9
154          0  3.4
155          0  4.0
156          0  0.2
157          1  4.4
158          0 -1.1
159          0  1.3
160          0  0.6
161          0  1.4
162          1  8.7
163          1  3.4
164          1  7.4
165          1  8.6
166          1  3.0
167          0 -1.2
168          0  2.0
169          1  6.7
170          0  2.1
171          1  5.6
172          1  8.1
173          1  8.3
174          1  2.7
175          0  2.6
176          1  8.7
177          1  5.7
178          1  6.9
179          1  5.3
180          1  8.8
181          0  1.5
182          0  0.3
183          1  8.6
184          1  4.0
185          1  8.5
186          0  0.3
187          1  7.1
188          1  6.7
189          1  9.3
190          1  4.6
191          1  6.5
192          0  2.7
193          0 -0.8
194          1  9.1
195          0  1.4
196          1  5.1
197          0 -0.7
198          1  8.1
199          0  1.8
200          1  7.4
201          0  1.2
202          0  0.6
203          1  4.2
204          0  1.2
205          0  0.2
206          1  4.2
207          1  4.8
208          0 -0.5
209          0  1.1
210          1  6.6
211          1  9.5
212          0 -0.8
213          1  7.2
214          1  9.4
215          1  7.8
216          1  1.7
217          1  5.8
218          1  9.4
219          1  9.4
220          0  2.1
221          0  1.1
222          0  0.0
223          0  1.9
224          1  4.1
225          1  9.1
226          1  4.1
227          0  1.1
228          0 -1.4
229          0  3.0
230          1  8.2
231          0  2.2
232          0 -0.4
233          0  2.5
234          1  5.6
235          1  2.7
236          1  6.3
237          1  6.3
238          1  4.7
239          1  3.2
240          1  3.4
241          0  1.7
242          1  4.9
243          1  8.9
244          0 -0.3
245          0  3.0
246          0  0.5
247          0  3.1
248          0 -0.4
249          1  3.5
250          1  9.3
251          1  7.1
252          1  9.2
253          1  3.6
254          1  5.2
255          1  3.8
256          0 -0.7
257          0  1.0
258          1  4.0
259          1  2.5
260          1  9.2
261          1  4.3
262          0  1.8
263          0  1.3
264          1  7.5
265          1  6.4
266          0  0.0
267          0 -1.2
268          1  7.1
269          1  5.4
270          0  0.0
271          0 -1.3
272          0 -0.7
273          0  2.6
274          0  0.0
275          0  1.6
276          0  0.3
277          0  1.1
278          0  0.2
279          1  3.7
280          1  7.2
281          0 -1.7
282          1  4.3
283          1  8.6
284          1  2.5
285          0 -1.4
286          0 -0.3
287          0  1.9
288          0 -0.1
289          0 -0.4
290          0  0.7
291          0  0.7
292          0 -0.4
293          1  9.8
294          0  1.9
295          1  4.1
296          1  6.2
297          0 -0.8
298          0 -0.6
299          0 -1.4
300          1  9.2
301          1  6.1
302          0 -0.9
303          1  3.9
304          0  3.5
305          1  2.5
306          1  9.9
307          0  0.1
308          1  7.8
309          0 -1.2
310          1  2.8
311          0 -0.3
312          0  0.3
313          1  8.1
314          1  6.6
315          0  1.2
316          1  3.9
317          0 -1.0
318          0  2.2
319          1  9.6
320          1  5.5
321          1  6.0
322          0  1.7
323          0  2.9
324          1 10.0
325          1  8.3
326          1  9.4
327          1  7.7
328          1  7.4
329          0  1.2
330          1  7.1
331          1  9.8
332          0  1.5
333          1  2.8
334          1  7.7
335          0 -1.1
336          1  2.4
337          1  3.3
338          0 -0.1
339          1  5.0
340          1  9.6
341          1  9.9
342          0  0.1
343          1  4.5
344          1  2.6
345          1  6.1
346          0  1.2
347          1  3.6
348          0  0.1
349          1  2.4
350          1  6.7
351          1  3.8
352          0 -1.2
353          1  7.4
354          1  3.0
355          1  9.8
356          0  1.4
357          1  8.2
358          0 -1.0
359          1  8.6
360          0  3.7
361          0 -0.7
362          1  2.0
363          1  8.0
364          0  1.3
365          1  5.0
366          1  8.0
367          0 -1.1
368          1  6.4
369          1  6.4
370          1  3.6
371          1  3.2
372          1  4.7
373          1  9.1
374          0  0.8
375          0  0.7
376          0  3.0
377          1  2.0
378          1  8.4
379          0  0.1
380          1  3.9
381          0  3.2
382          1  4.8
383          1  5.9
384          1  9.7
385          0  0.8
386          0  0.9
387          1  7.6
388          1  8.0
389          0 -0.6
390          1  9.6
391          0 -0.2
392          0 -0.3
393          1  9.1
394          1  4.1
395          0 -0.1
396          0  2.2
397          1  5.9
398          1  1.7
399          0  2.2
400          0 -0.2
401          1  5.9
402          0  0.2
403          1  9.5
404          1  8.8
405          1  9.3
406          1  6.7
407          0  2.4
408          1  7.4
409          0 -1.9
410          1  9.3
411          1  9.9
412          0  2.3
413          1  7.0
414          1  7.5
415          1  6.5
416          1  3.7
417          1  3.9
418          0  1.7
419          1  6.3
420          1  7.9
421          0  3.2
422          1  4.2
423          1  6.0
424          0 -0.3
425          0  2.1
426          1  2.9
427          0 -1.0
428          1  9.2
429          1  8.1
430          1  8.6
431          1  9.2
432          0 -1.1
433          0  2.5
434          1  4.5
435          0 -0.7
436          1  7.6
437          1  6.9
438          0 -1.4
439          1  3.8
440          1  9.0
441          0 -1.5
442          0  1.5
443          1  4.0
444          1  5.3
445          1  1.2
446          1  3.1
447          0  2.4
448          1  9.3
449          0 -0.5
450          0 -1.2
451          1  9.6
452          1  3.3
453          0  2.4
454          0  0.0
455          0 -1.3
456          1  5.9
457          1  4.9
458          1  9.8
459          1  5.2
460          0 -1.2
461          0 -0.1
462          1  3.7
463          0 -2.0
464          1  3.3
465          0  1.1
466          1  9.3
467          1  6.6
468          0  0.0
469          1  3.7
470          1  6.3
471          1  3.5
472          1  9.5
473          1  6.6
474          1  2.8
475          0 -0.6
476          0  0.9
477          1  8.4
478          1  3.2
479          1  4.0
480          1  6.3
481          1  7.1
482          0 -0.1
483          1  8.2
484          1  9.4
485          1  5.1
486          1  4.0
487          0  0.3
488          0 -2.0
489          1  8.5
490          0 -0.4
491          0 -1.7
492          1  9.3
493          0  1.5
494          0  0.0
495          1  2.8
496          1  3.5
497          0  3.2
498          1  4.2
499          1  8.2
500          0 -1.3
501          1  4.7
502          1  6.3
503          1  5.9
504          1  6.0
505          1  3.7
506          1  9.6
507          0  2.8
508          1  8.2
509          1  7.1
510          1  4.4
511          1  8.5
512          1  3.6
513          0 -1.9
514          1  6.7
515          1  6.6
516          0  0.2
517          1  5.8
518          1  4.5
519          0  2.0
520          1  5.7
521          1  8.0
522          1  6.5
523          1  2.2
524          0 -0.5
525          1  2.7
526          1  9.1
527          1  7.7
528          1  7.1
529          1  9.5
530          1  9.9
531          1  5.3
532          0 -1.6
533          1  2.0
534          0  1.3
535          0 -0.6
536          0 -1.5
537          1  2.4
538          0  2.0
539          0  0.1
540          1  5.5
541          1  2.8
542          1  9.5
543          1  5.8
544          1  1.9
545          0  0.4
546          0 -0.6
547          1 10.0
548          1  2.6
549          1  4.7
550          1  6.8
551          1  8.4
552          1  4.9
553          0 -1.9
554          1  8.9
555          1  7.2
556          0  2.6
557          0 -0.9
558          0 -1.4
559          1  7.9
560          1  8.0
561          1  5.9
562          0 -0.4
563          1  2.1
564          1  6.8
565          1  8.9
566          1  6.4
567          0  0.9
568          1  5.7
569          0  1.4
570          1  9.5
571          0 -0.1
572          1  3.0
573          0  1.0
574          0 -0.9
575          1  7.9
576          0  4.3
577          1  6.0
578          1  2.9
579          1  8.1
580          1  6.8
581          0  2.2
582          1  9.4
583          1  5.8
584          0 -1.6
585          1  5.2
586          1  3.0
587          0 -1.1
588          1  4.3
589          1  9.5
590          1  6.5
591          1  4.6
592          0  0.9
593          1  7.3
594          1  5.8
595          1  8.0
596          1  5.8
597          1  3.8
598          1  3.9
599          0  2.6
600          1  3.4
601          1  7.8
602          1  9.1
603          0 -0.2
604          1  7.0
605          1  9.7
606          1  9.7
607          0  2.2
608          1  2.7
609          1  9.4
610          0 -0.7
611          1  9.2
612          1  2.2
613          1  4.4
614          1  4.5
615          1  6.6
616          0  2.9
617          0 -0.2
618          0  2.1
619          1  5.5
620          0 -1.3
621          1  8.2
622          0  0.6
623          1  4.5
624          0 -0.4
625          0  1.9
626          1  5.5
627          0  1.1
628          1  5.6
629          1  3.8
630          1  9.3
631          1  8.3
632          0  2.5
633          0  1.8
634          1  7.9
635          1  3.4
636          0  1.8
637          0 -0.8
638          0 -1.2
639          1  6.3
640          1  6.0
641          1  8.9
642          0  1.6
643          1  9.2
644          0  0.4
645          1  7.5
646          0  0.7
647          0 -1.6
648          1  8.3
649          1  6.2
650          1  9.3
651          1  6.1
652          1  8.1
653          0  2.3
654          1  2.7
655          0  4.8
656          0 -0.9
657          0  0.3
658          1  5.1
659          1  7.0
660          1  8.4
661          0  2.5
662          1  7.6
663          0 -1.3
664          1  5.5
665          1  2.3
666          1  5.1
667          1  9.0
668          0  0.4
669          1  2.4
670          1  6.1
671          1  7.2
672          1  4.3
673          1  7.9
674          1  4.3
675          1  4.0
676          1  3.0
677          0  2.3
678          0 -0.5
679          0  1.6
680          0  1.3
681          1  7.2
682          1  7.3
683          0 -0.3
684          1  4.2
685          0  5.2
686          1  4.1
687          1  2.6
688          0  3.1
689          0 -1.9
690          1  9.0
691          0 -1.0
692          1  4.1
693          1  7.8
694          1  5.2
695          1  3.1
696          1  4.7
697          1  7.5
698          0  0.0
699          1  9.6
700          1  3.7
701          1  9.2
702          1  8.8
703          1  7.0
704          1  6.1
705          1  5.8
706          0 -1.1
707          1  3.1
708          1  4.4
709          1  9.3
710          1  6.5
711          1  6.7
712          1  3.6
713          0 -0.6
714          1  7.4
715          1  3.3
716          0  3.2
717          0 -1.7
718          0 -0.2
719          1  3.1
720          1  7.2
721          0 -1.9
722          1  5.2
723          1  8.9
724          1  6.5
725          0  1.2
726          1  8.2
727          0  2.0
728          1  4.9
729          1  3.2
730          0 -1.4
731          1  6.8
732          1  4.6
733          1  7.0
734          0 -1.4
735          1  6.6
736          0  1.6
737          0  1.4
738          1  8.0
739          0 -1.0
740          0 -1.5
741          1  2.2
742          0  4.5
743          1  5.3
744          0  1.3
745          0  0.5
746          1  2.6
747          1  3.7
748          1  8.0
749          0 -0.5
750          1  6.1
751          1  4.0
752          1  8.8
753          1  4.6
754          0 -0.5
755          1  3.3
756          0  0.3
757          1  3.2
758          0  0.7
759          1  9.5
760          1  3.4
761          1  7.3
762          0 -0.1
763          1  8.4
764          0  0.5
765          0  0.1
766          0  0.0
767          1  4.8
768          1  6.7
769          1  8.5
770          1  6.5
771          0  3.7
772          1  7.8
773          0 -1.8
774          1 10.0
775          1  5.6
776          1  3.1
777          0 -1.7
778          1  7.0
779          0  0.5
780          1 10.0
781          1  8.9
782          1  6.5
783          1  6.8
784          1  3.7
785          1  8.4
786          0  0.0
787          1  5.4
788          0  1.5
789          1  3.5
790          0 -1.5
791          0  0.1
792          0 -1.3
793          1  9.3
794          0  2.1
795          1  4.2
796          1  5.5
797          0  0.8
798          1  4.2
799          1  7.7
800          0  2.2
801          1  8.3
802          0 -1.6
803          1  9.7
804          1  6.9
805          0  1.3
806          1  6.1
807          0  2.2
808          1  9.4
809          1  2.1
810          0 -1.6
811          0  2.2
812          1  2.6
813          1  2.3
814          1  9.5
815          0  2.6
816          1  4.6
817          1  9.1
818          1  9.0
819          0  0.9
820          1  6.6
821          0  2.2
822          1  4.7
823          1  6.9
824          1  7.8
825          1  8.4
826          0 -1.6
827          0  0.6
828          0  2.4
829          1  1.7
830          1  6.7
831          1  6.4
832          1  8.9
833          1  8.1
834          1  7.3
835          0  2.8
836          1  4.9
837          0 -1.1
838          1  8.5
839          1  9.5
840          1  4.1
841          1  9.1
842          0 -0.4
843          1  0.9
844          0  3.9
845          1  3.7
846          1  3.2
847          0 -1.5
848          1  5.7
849          1  6.6
850          0  2.2
851          1  9.4
852          1  6.9
853          0 -1.4
854          1  9.8
855          0  0.6
856          0 -1.6
857          0  1.1
858          1  6.6
859          0  1.0
860          0  0.8
861          0 -1.7
862          0  1.2
863          1  6.3
864          0 -1.6
865          0 -1.2
866          1  2.8
867          1  3.9
868          1  5.6
869          1  6.7
870          0 -1.1
871          0  3.1
872          1  9.7
873          1  7.8
874          0  0.7
875          1  3.9
876          0 -1.9
877          0  1.1
878          1  3.5
879          1  6.9
880          1  9.9
881          0  2.0
882          1  9.3
883          1  9.5
884          1  8.8
885          1  3.9
886          1  7.4
887          1  7.6
888          1  6.1
889          1  5.0
890          0  2.0
891          0 -2.0
892          0 -1.2
893          0 -1.0
894          0 -1.8
895          1  2.0
896          0 -0.6
897          1  5.1
898          0 -1.6
899          0 -1.9
900          0 -0.1
901          1  8.0
902          1  7.2
903          0  1.3
904          0  0.3
905          0  0.7
906          0 -1.3
907          0 -1.3
908          0 -0.2
909          0 -1.1
910          0 -1.5
911          1  4.3
912          1  7.5
913          1  6.3
914          0 -1.2
915          0 -1.8
916          1  3.3
917          0 -0.1
918          1  6.6
919          1  6.4
920          1  8.6
921          0  1.9
922          1  9.7
923          1  9.8
924          0 -1.5
925          1  8.7
926          1  7.9
927          1  6.7
928          0  1.5
929          1  4.0
930          0  3.1
931          1  5.3
932          1  9.1
933          0  0.9
934          0  1.3
935          1  6.8
936          1  7.0
937          1  9.2
938          1  3.6
939          1  8.3
940          0  1.7
941          0  0.5
942          1  9.0
943          0 -1.4
944          1  2.9
945          1  3.5
946          1  3.0
947          1  6.0
948          1  7.1
949          1  8.9
950          1  7.8
951          0 -0.9
952          0  0.1
953          1  5.7
954          1  8.5
955          1  5.1
956          0  1.1
957          1  8.6
958          0  0.3
959          1  3.9
960          0 -1.9
961          1  2.3
962          1  3.3
963          0 -0.5
964          1  5.5
965          0  1.6
966          0  0.9
967          1  2.3
968          1  8.7
969          1  9.9
970          1  6.8
971          1  9.9
972          1  4.5
973          1  3.2
974          1  9.6
975          0 -0.2
976          0 -1.2
977          0 -1.7
978          1  5.3
979          1  6.4
980          1  7.6
981          0 -0.3
982          0 -0.1
983          1  9.9
984          1  2.8
985          0  0.3
986          1  3.7
987          1  4.5
988          0  1.9
989          1 10.0
990          1  4.3
991          0 -0.4
992          1  3.3
993          1  5.4
994          0  0.4
995          0 -0.4
996          1  7.3
997          1  5.6
998          0  1.4
999          0  0.3
1000         0  1.2

En vez de contar excrementos, hoy vamos a anotar únicamente la presencia/ausencia de corzos en cada una de nuestras unidades muestrales, anotando la temperatura en cada una de ellas como variable predictora.

\[\begin{equation} Y_i \sim Bernoulli(p_i) \end{equation}\] \[\begin{equation} logit(p_i) = \beta_0 + \beta_1Temperatura_i \end{equation}\]
m1 <- glm(presencia ~ temp, family = binomial(link = "logit"), data = df)
             Estimate Std. Error   z value     Pr(>|z|)
(Intercept) -5.030253  0.4553153 -11.04785 2.245344e-28
temp         1.956012  0.1658162  11.79627 4.080023e-32

En vez de contar excrementos, hoy vamos a anotar únicamente la presencia/ausencia de corzos en cada una de nuestras unidades muestrales, anotando la temperatura en cada una de ellas como variable predictora.

\[\begin{equation} Y_i \sim Bernoulli(p_i) \end{equation}\] \[\begin{equation} logit(p_i) = \beta_0 + \beta_1Temperatura_i \end{equation}\]

Ahora, en vez de muestrear una vez cada una de nuestras celdas, las muestreamos en 4 ocasiones, anotando si hemos detectado o no la especie de estudio

     presencia temp o1 o2 o3 o4
1            0  1.2  0  0  0  0
2            1  2.5  1  1  1  0
3            1  4.9  0  0  0  0
4            1  8.9  0  0  0  0
5            0  0.4  0  0  0  0
6            1  8.8  1  0  0  0
7            1  9.3  0  0  1  0
8            1  5.9  0  1  0  0
9            1  5.5  0  1  0  0
10           0 -1.3  0  0  0  0
11           0  0.5  0  0  0  0
12           0  0.1  0  0  0  0
13           1  6.2  1  0  0  0
14           0  2.6  0  0  0  0
15           1  7.2  0  1  0  0
16           1  4.0  0  1  1  0
17           1  6.6  0  0  1  0
18           1  9.9  1  0  1  0
19           1  2.6  1  1  0  1
20           1  7.3  0  0  1  0
21           1  9.2  0  0  1  0
22           0  0.5  0  0  0  0
23           1  5.8  0  0  0  1
24           0 -0.5  0  0  0  0
25           0  1.2  0  0  0  0
26           0  2.6  0  0  0  0
27           0 -1.8  0  0  0  0
28           1  2.6  0  0  0  0
29           1  8.4  1  0  1  1
30           1  2.1  0  1  1  0
31           1  3.8  1  0  0  0
32           1  5.2  1  0  1  0
33           1  3.9  0  1  0  0
34           0  0.2  0  0  0  0
35           1  7.9  1  0  1  1
36           1  6.0  1  0  0  0
37           1  7.5  1  1  0  0
38           0 -0.7  0  0  0  0
39           1  6.7  0  1  0  0
40           1  2.9  0  1  1  0
41           1  7.9  1  1  0  0
42           1  5.8  1  1  0  0
43           1  7.4  1  1  0  1
44           1  4.6  0  0  1  0
45           1  4.4  1  1  0  0
46           1  7.5  0  1  0  1
47           0 -1.7  0  0  0  0
48           1  3.7  0  1  0  0
49           1  6.8  0  1  0  0
50           1  6.3  1  0  0  0
51           1  3.7  0  0  1  0
52           1  8.3  1  0  0  0
53           1  3.3  0  0  0  0
54           0  0.9  0  0  0  0
55           0 -1.2  0  0  0  0
56           0 -0.8  0  0  0  0
57           0  1.8  0  0  0  0
58           1  4.2  1  0  0  0
59           1  5.9  1  1  0  0
60           1  2.9  1  1  0  0
61           1  9.0  0  0  0  0
62           1  1.5  1  0  0  0
63           1  3.5  1  0  0  1
64           0  2.0  0  0  0  0
65           1  5.8  1  1  1  0
66           0  1.1  0  0  0  0
67           1  3.7  0  1  0  0
68           1  7.2  0  0  0  1
69           0 -1.0  0  0  0  0
70           1  8.5  1  1  1  0
71           0  2.1  0  0  0  0
72           1  8.1  0  1  1  0
73           0  2.2  0  0  0  0
74           0  2.0  0  0  0  0
75           1  3.7  0  1  0  0
76           1  8.7  1  0  0  0
77           1  8.4  0  0  1  1
78           1  2.7  0  0  0  1
79           1  7.3  0  0  1  0
80           1  9.5  0  0  1  0
81           1  3.2  1  0  1  0
82           1  6.6  0  1  1  0
83           1  2.8  0  0  0  1
84           0  1.9  0  0  0  0
85           1  7.1  0  0  0  1
86           0  0.4  0  0  0  0
87           1  6.5  0  0  0  0
88           0 -0.5  0  0  0  0
89           0  0.9  0  0  0  0
90           0 -0.3  0  0  0  0
91           0  0.9  0  0  0  0
92           0 -1.3  0  0  0  0
93           1  5.7  0  0  0  0
94           1  8.5  1  1  0  1
95           1  7.3  0  0  0  0
96           1  7.6  0  0  0  1
97           1  3.5  1  0  0  0
98           1  2.9  0  0  0  1
99           1  7.7  0  1  1  1
100          1  5.3  0  0  0  1
101          1  5.9  1  0  0  1
102          0  2.2  0  0  0  0
103          0  1.2  0  0  0  0
104          1  9.9  1  1  1  0
105          1  5.6  0  1  1  0
106          0  0.6  0  0  0  0
107          0 -0.4  0  0  0  0
108          1  3.7  1  0  0  0
109          1  9.1  0  0  0  0
110          1  5.2  1  0  0  1
111          1  9.7  0  1  0  1
112          1  6.8  1  0  0  1
113          0  2.3  0  0  0  0
114          1  3.2  0  1  0  0
115          0 -0.2  0  0  0  0
116          0 -1.8  0  0  0  0
117          1  6.6  0  0  0  0
118          0 -0.8  0  0  0  0
119          1  3.4  0  0  0  1
120          1  5.7  0  1  1  0
121          1  9.9  0  0  0  1
122          1  3.9  0  1  0  0
123          1  3.8  1  0  0  1
124          0  0.1  0  0  0  0
125          1  7.1  0  0  0  1
126          0  3.4  0  0  0  0
127          1  4.1  0  0  0  1
128          0  0.5  0  0  0  0
129          0  0.7  0  0  0  0
130          1  5.1  1  1  1  1
131          1  4.9  1  1  1  1
132          0 -1.1  0  0  0  0
133          0 -1.6  0  0  0  0
134          1  5.7  0  1  1  0
135          1  9.1  0  1  0  0
136          1  5.2  1  0  0  0
137          1  4.7  0  1  0  1
138          1  4.3  1  1  1  0
139          1  9.8  1  0  0  0
140          1  4.1  1  1  0  0
141          1  6.2  1  1  0  1
142          1  5.2  0  1  1  0
143          0  0.9  0  0  0  0
144          0  1.1  0  0  0  0
145          1  6.8  0  0  0  1
146          1  3.4  0  0  0  0
147          0  0.1  0  0  0  0
148          1  7.0  0  0  0  0
149          0 -0.7  0  0  0  0
150          1  8.4  0  0  1  1
151          1  5.4  0  0  0  1
152          1  4.7  1  0  1  1
153          0  1.9  0  0  0  0
154          0  3.4  0  0  0  0
155          0  4.0  0  0  0  0
156          0  0.2  0  0  0  0
157          1  4.4  0  1  0  0
158          0 -1.1  0  0  0  0
159          0  1.3  0  0  0  0
160          0  0.6  0  0  0  0
161          0  1.4  0  0  0  0
162          1  8.7  1  1  1  1
163          1  3.4  0  1  1  1
164          1  7.4  0  0  0  0
165          1  8.6  1  0  1  1
166          1  3.0  1  0  0  1
167          0 -1.2  0  0  0  0
168          0  2.0  0  0  0  0
169          1  6.7  1  0  1  1
170          0  2.1  0  0  0  0
171          1  5.6  0  0  1  0
172          1  8.1  0  1  0  1
173          1  8.3  1  0  1  1
174          1  2.7  0  1  0  0
175          0  2.6  0  0  0  0
176          1  8.7  1  1  0  0
177          1  5.7  0  0  1  0
178          1  6.9  1  0  0  1
179          1  5.3  0  0  1  0
180          1  8.8  0  0  1  0
181          0  1.5  0  0  0  0
182          0  0.3  0  0  0  0
183          1  8.6  0  0  0  0
184          1  4.0  0  0  1  0
185          1  8.5  0  1  0  0
186          0  0.3  0  0  0  0
187          1  7.1  0  1  0  0
188          1  6.7  1  0  0  1
189          1  9.3  0  1  0  0
190          1  4.6  0  0  1  0
191          1  6.5  1  0  1  0
192          0  2.7  0  0  0  0
193          0 -0.8  0  0  0  0
194          1  9.1  0  0  0  0
195          0  1.4  0  0  0  0
196          1  5.1  1  1  0  0
197          0 -0.7  0  0  0  0
198          1  8.1  1  1  0  1
199          0  1.8  0  0  0  0
200          1  7.4  0  0  0  0
201          0  1.2  0  0  0  0
202          0  0.6  0  0  0  0
203          1  4.2  0  1  0  1
204          0  1.2  0  0  0  0
205          0  0.2  0  0  0  0
206          1  4.2  0  1  0  0
207          1  4.8  1  0  0  1
208          0 -0.5  0  0  0  0
209          0  1.1  0  0  0  0
210          1  6.6  0  1  1  0
211          1  9.5  1  0  1  0
212          0 -0.8  0  0  0  0
213          1  7.2  1  1  0  0
214          1  9.4  1  0  1  0
215          1  7.8  1  1  1  1
216          1  1.7  0  1  0  0
217          1  5.8  0  0  1  0
218          1  9.4  1  1  1  0
219          1  9.4  0  0  0  0
220          0  2.1  0  0  0  0
221          0  1.1  0  0  0  0
222          0  0.0  0  0  0  0
223          0  1.9  0  0  0  0
224          1  4.1  0  0  1  1
225          1  9.1  1  1  1  0
226          1  4.1  1  1  0  1
227          0  1.1  0  0  0  0
228          0 -1.4  0  0  0  0
229          0  3.0  0  0  0  0
230          1  8.2  1  1  1  1
231          0  2.2  0  0  0  0
232          0 -0.4  0  0  0  0
233          0  2.5  0  0  0  0
234          1  5.6  1  0  0  0
235          1  2.7  0  0  1  1
236          1  6.3  0  0  1  1
237          1  6.3  1  0  1  0
238          1  4.7  0  1  0  0
239          1  3.2  1  0  0  1
240          1  3.4  0  0  0  0
241          0  1.7  0  0  0  0
242          1  4.9  0  0  1  0
243          1  8.9  0  0  1  0
244          0 -0.3  0  0  0  0
245          0  3.0  0  0  0  0
246          0  0.5  0  0  0  0
247          0  3.1  0  0  0  0
248          0 -0.4  0  0  0  0
249          1  3.5  0  0  0  0
250          1  9.3  0  0  0  1
251          1  7.1  0  0  1  0
252          1  9.2  0  0  1  1
253          1  3.6  0  0  1  0
254          1  5.2  0  1  0  0
255          1  3.8  1  0  0  0
256          0 -0.7  0  0  0  0
257          0  1.0  0  0  0  0
258          1  4.0  1  0  0  0
259          1  2.5  0  0  0  0
260          1  9.2  0  0  0  0
261          1  4.3  0  1  0  1
262          0  1.8  0  0  0  0
263          0  1.3  0  0  0  0
264          1  7.5  0  1  1  1
265          1  6.4  0  0  1  0
266          0  0.0  0  0  0  0
267          0 -1.2  0  0  0  0
268          1  7.1  0  0  0  1
269          1  5.4  0  0  0  0
270          0  0.0  0  0  0  0
271          0 -1.3  0  0  0  0
272          0 -0.7  0  0  0  0
273          0  2.6  0  0  0  0
274          0  0.0  0  0  0  0
275          0  1.6  0  0  0  0
276          0  0.3  0  0  0  0
277          0  1.1  0  0  0  0
278          0  0.2  0  0  0  0
279          1  3.7  0  1  1  0
280          1  7.2  1  0  1  0
281          0 -1.7  0  0  0  0
282          1  4.3  0  0  0  1
283          1  8.6  0  0  0  1
284          1  2.5  0  1  1  0
285          0 -1.4  0  0  0  0
286          0 -0.3  0  0  0  0
287          0  1.9  0  0  0  0
288          0 -0.1  0  0  0  0
289          0 -0.4  0  0  0  0
290          0  0.7  0  0  0  0
291          0  0.7  0  0  0  0
292          0 -0.4  0  0  0  0
293          1  9.8  0  0  1  1
294          0  1.9  0  0  0  0
295          1  4.1  0  0  0  0
296          1  6.2  0  0  0  0
297          0 -0.8  0  0  0  0
298          0 -0.6  0  0  0  0
299          0 -1.4  0  0  0  0
300          1  9.2  0  1  0  0
301          1  6.1  0  1  0  0
302          0 -0.9  0  0  0  0
303          1  3.9  0  1  0  1
304          0  3.5  0  0  0  0
305          1  2.5  1  1  0  1
306          1  9.9  0  0  0  0
307          0  0.1  0  0  0  0
308          1  7.8  0  1  0  0
309          0 -1.2  0  0  0  0
310          1  2.8  0  1  0  0
311          0 -0.3  0  0  0  0
312          0  0.3  0  0  0  0
313          1  8.1  1  0  1  0
314          1  6.6  1  0  0  1
315          0  1.2  0  0  0  0
316          1  3.9  1  0  0  0
317          0 -1.0  0  0  0  0
318          0  2.2  0  0  0  0
319          1  9.6  1  0  0  0
320          1  5.5  0  0  0  0
321          1  6.0  0  1  0  1
322          0  1.7  0  0  0  0
323          0  2.9  0  0  0  0
324          1 10.0  1  0  0  0
325          1  8.3  0  0  0  0
326          1  9.4  1  0  0  1
327          1  7.7  0  0  0  1
328          1  7.4  0  1  1  0
329          0  1.2  0  0  0  0
330          1  7.1  0  0  0  1
331          1  9.8  0  0  1  0
332          0  1.5  0  0  0  0
333          1  2.8  0  1  1  0
334          1  7.7  1  0  0  0
335          0 -1.1  0  0  0  0
336          1  2.4  0  1  0  0
337          1  3.3  0  0  0  0
338          0 -0.1  0  0  0  0
339          1  5.0  1  1  0  0
340          1  9.6  0  0  0  0
341          1  9.9  1  0  0  0
342          0  0.1  0  0  0  0
343          1  4.5  0  1  1  1
344          1  2.6  0  0  0  1
345          1  6.1  0  0  1  0
346          0  1.2  0  0  0  0
347          1  3.6  1  1  1  1
348          0  0.1  0  0  0  0
349          1  2.4  1  0  1  0
350          1  6.7  1  0  1  1
351          1  3.8  1  1  0  1
352          0 -1.2  0  0  0  0
353          1  7.4  0  0  0  0
354          1  3.0  0  0  1  0
355          1  9.8  0  0  1  0
356          0  1.4  0  0  0  0
357          1  8.2  1  1  1  0
358          0 -1.0  0  0  0  0
359          1  8.6  1  0  0  1
360          0  3.7  0  0  0  0
361          0 -0.7  0  0  0  0
362          1  2.0  1  0  0  0
363          1  8.0  1  0  1  0
364          0  1.3  0  0  0  0
365          1  5.0  0  1  0  1
366          1  8.0  0  0  1  1
367          0 -1.1  0  0  0  0
368          1  6.4  0  0  0  1
369          1  6.4  1  0  0  1
370          1  3.6  0  1  0  1
371          1  3.2  0  0  0  0
372          1  4.7  0  0  0  1
373          1  9.1  0  1  0  0
374          0  0.8  0  0  0  0
375          0  0.7  0  0  0  0
376          0  3.0  0  0  0  0
377          1  2.0  1  0  1  1
378          1  8.4  1  0  1  1
379          0  0.1  0  0  0  0
380          1  3.9  0  0  1  1
381          0  3.2  0  0  0  0
382          1  4.8  1  1  0  0
383          1  5.9  0  0  1  1
384          1  9.7  0  0  1  0
385          0  0.8  0  0  0  0
386          0  0.9  0  0  0  0
387          1  7.6  0  0  0  1
388          1  8.0  0  1  0  1
389          0 -0.6  0  0  0  0
390          1  9.6  0  0  0  1
391          0 -0.2  0  0  0  0
392          0 -0.3  0  0  0  0
393          1  9.1  1  1  0  1
394          1  4.1  1  0  0  1
395          0 -0.1  0  0  0  0
396          0  2.2  0  0  0  0
397          1  5.9  0  0  0  0
398          1  1.7  0  1  0  1
399          0  2.2  0  0  0  0
400          0 -0.2  0  0  0  0
401          1  5.9  0  1  0  0
402          0  0.2  0  0  0  0
403          1  9.5  1  0  1  0
404          1  8.8  1  1  0  1
405          1  9.3  0  0  1  0
406          1  6.7  1  0  0  1
407          0  2.4  0  0  0  0
408          1  7.4  0  0  1  0
409          0 -1.9  0  0  0  0
410          1  9.3  1  1  0  0
411          1  9.9  0  0  1  0
412          0  2.3  0  0  0  0
413          1  7.0  0  0  0  0
414          1  7.5  1  0  0  0
415          1  6.5  1  1  0  0
416          1  3.7  1  1  0  0
417          1  3.9  1  1  1  1
418          0  1.7  0  0  0  0
419          1  6.3  0  0  1  1
420          1  7.9  0  0  0  0
421          0  3.2  0  0  0  0
422          1  4.2  0  0  0  0
423          1  6.0  0  0  0  0
424          0 -0.3  0  0  0  0
425          0  2.1  0  0  0  0
426          1  2.9  0  0  1  0
427          0 -1.0  0  0  0  0
428          1  9.2  0  0  1  0
429          1  8.1  0  0  1  0
430          1  8.6  1  0  0  0
431          1  9.2  0  1  0  0
432          0 -1.1  0  0  0  0
433          0  2.5  0  0  0  0
434          1  4.5  0  0  0  0
435          0 -0.7  0  0  0  0
436          1  7.6  0  0  1  0
437          1  6.9  0  1  1  1
438          0 -1.4  0  0  0  0
439          1  3.8  0  0  1  0
440          1  9.0  1  1  0  0
441          0 -1.5  0  0  0  0
442          0  1.5  0  0  0  0
443          1  4.0  0  1  1  1
444          1  5.3  0  1  1  1
445          1  1.2  1  0  0  1
446          1  3.1  0  1  0  1
447          0  2.4  0  0  0  0
448          1  9.3  0  0  0  1
449          0 -0.5  0  0  0  0
450          0 -1.2  0  0  0  0
451          1  9.6  1  1  0  0
452          1  3.3  1  0  1  1
453          0  2.4  0  0  0  0
454          0  0.0  0  0  0  0
455          0 -1.3  0  0  0  0
456          1  5.9  0  0  0  0
457          1  4.9  1  0  1  0
458          1  9.8  1  1  1  0
459          1  5.2  1  0  0  0
460          0 -1.2  0  0  0  0
461          0 -0.1  0  0  0  0
462          1  3.7  0  1  0  1
463          0 -2.0  0  0  0  0
464          1  3.3  0  0  0  0
465          0  1.1  0  0  0  0
466          1  9.3  0  0  1  1
467          1  6.6  0  1  0  1
468          0  0.0  0  0  0  0
469          1  3.7  1  1  1  0
470          1  6.3  1  1  0  1
471          1  3.5  0  0  0  1
472          1  9.5  1  0  1  1
473          1  6.6  0  0  0  0
474          1  2.8  1  1  1  1
475          0 -0.6  0  0  0  0
476          0  0.9  0  0  0  0
477          1  8.4  0  0  1  0
478          1  3.2  0  0  1  1
479          1  4.0  0  0  0  0
480          1  6.3  1  1  1  0
481          1  7.1  0  0  1  1
482          0 -0.1  0  0  0  0
483          1  8.2  1  0  0  1
484          1  9.4  0  1  0  0
485          1  5.1  0  0  1  0
486          1  4.0  0  0  0  1
487          0  0.3  0  0  0  0
488          0 -2.0  0  0  0  0
489          1  8.5  1  1  0  1
490          0 -0.4  0  0  0  0
491          0 -1.7  0  0  0  0
492          1  9.3  0  1  0  0
493          0  1.5  0  0  0  0
494          0  0.0  0  0  0  0
495          1  2.8  1  1  0  1
496          1  3.5  0  0  1  0
497          0  3.2  0  0  0  0
498          1  4.2  0  1  1  0
499          1  8.2  1  0  1  0
500          0 -1.3  0  0  0  0
501          1  4.7  1  0  1  1
502          1  6.3  1  1  0  0
503          1  5.9  1  1  0  1
504          1  6.0  1  1  1  0
505          1  3.7  0  1  0  0
506          1  9.6  0  0  1  0
507          0  2.8  0  0  0  0
508          1  8.2  0  1  0  0
509          1  7.1  0  0  0  0
510          1  4.4  0  1  0  0
511          1  8.5  1  0  0  0
512          1  3.6  0  0  0  0
513          0 -1.9  0  0  0  0
514          1  6.7  0  0  0  0
515          1  6.6  1  0  0  1
516          0  0.2  0  0  0  0
517          1  5.8  0  1  1  0
518          1  4.5  1  0  0  1
519          0  2.0  0  0  0  0
520          1  5.7  0  0  0  0
521          1  8.0  1  0  1  1
522          1  6.5  0  0  1  1
523          1  2.2  1  1  0  1
524          0 -0.5  0  0  0  0
525          1  2.7  1  0  0  1
526          1  9.1  1  1  1  1
527          1  7.7  0  0  0  0
528          1  7.1  0  1  0  1
529          1  9.5  0  1  1  1
530          1  9.9  0  1  0  1
531          1  5.3  0  1  1  1
532          0 -1.6  0  0  0  0
533          1  2.0  1  1  0  1
534          0  1.3  0  0  0  0
535          0 -0.6  0  0  0  0
536          0 -1.5  0  0  0  0
537          1  2.4  0  0  1  0
538          0  2.0  0  0  0  0
539          0  0.1  0  0  0  0
540          1  5.5  0  0  0  1
541          1  2.8  0  0  0  0
542          1  9.5  1  1  1  0
543          1  5.8  0  0  1  0
544          1  1.9  0  0  0  1
545          0  0.4  0  0  0  0
546          0 -0.6  0  0  0  0
547          1 10.0  0  0  0  1
548          1  2.6  0  0  1  0
549          1  4.7  1  1  1  0
550          1  6.8  0  1  1  1
551          1  8.4  1  1  1  0
552          1  4.9  0  1  1  0
553          0 -1.9  0  0  0  0
554          1  8.9  0  0  0  0
555          1  7.2  1  0  0  0
556          0  2.6  0  0  0  0
557          0 -0.9  0  0  0  0
558          0 -1.4  0  0  0  0
559          1  7.9  0  0  0  0
560          1  8.0  0  1  1  0
561          1  5.9  0  0  0  1
562          0 -0.4  0  0  0  0
563          1  2.1  0  0  0  0
564          1  6.8  1  0  0  1
565          1  8.9  1  0  0  1
566          1  6.4  0  1  1  0
567          0  0.9  0  0  0  0
568          1  5.7  0  1  0  0
569          0  1.4  0  0  0  0
570          1  9.5  0  1  0  0
571          0 -0.1  0  0  0  0
572          1  3.0  0  1  0  0
573          0  1.0  0  0  0  0
574          0 -0.9  0  0  0  0
575          1  7.9  1  1  0  0
576          0  4.3  0  0  0  0
577          1  6.0  1  1  1  1
578          1  2.9  0  0  0  1
579          1  8.1  0  1  1  0
580          1  6.8  0  0  0  0
581          0  2.2  0  0  0  0
582          1  9.4  0  1  1  0
583          1  5.8  1  0  0  1
584          0 -1.6  0  0  0  0
585          1  5.2  0  1  0  1
586          1  3.0  1  1  1  1
587          0 -1.1  0  0  0  0
588          1  4.3  0  1  1  0
589          1  9.5  1  0  0  0
590          1  6.5  0  0  1  0
591          1  4.6  1  1  0  0
592          0  0.9  0  0  0  0
593          1  7.3  1  0  0  0
594          1  5.8  0  0  1  1
595          1  8.0  1  0  1  1
596          1  5.8  0  1  1  1
597          1  3.8  1  0  0  0
598          1  3.9  0  1  1  0
599          0  2.6  0  0  0  0
600          1  3.4  0  0  0  0
601          1  7.8  0  1  0  0
602          1  9.1  0  1  0  0
603          0 -0.2  0  0  0  0
604          1  7.0  1  1  1  0
605          1  9.7  0  0  0  0
606          1  9.7  0  1  1  0
607          0  2.2  0  0  0  0
608          1  2.7  0  0  1  1
609          1  9.4  0  0  0  1
610          0 -0.7  0  0  0  0
611          1  9.2  1  1  0  1
612          1  2.2  1  1  1  0
613          1  4.4  0  1  1  1
614          1  4.5  0  0  0  1
615          1  6.6  0  1  1  0
616          0  2.9  0  0  0  0
617          0 -0.2  0  0  0  0
618          0  2.1  0  0  0  0
619          1  5.5  1  0  0  1
620          0 -1.3  0  0  0  0
621          1  8.2  0  0  0  1
622          0  0.6  0  0  0  0
623          1  4.5  0  1  0  1
624          0 -0.4  0  0  0  0
625          0  1.9  0  0  0  0
626          1  5.5  0  0  0  0
627          0  1.1  0  0  0  0
628          1  5.6  0  1  0  0
629          1  3.8  0  0  1  0
630          1  9.3  0  0  1  0
631          1  8.3  0  0  0  0
632          0  2.5  0  0  0  0
633          0  1.8  0  0  0  0
634          1  7.9  0  1  0  0
635          1  3.4  0  0  1  0
636          0  1.8  0  0  0  0
637          0 -0.8  0  0  0  0
638          0 -1.2  0  0  0  0
639          1  6.3  0  1  1  1
640          1  6.0  0  0  1  0
641          1  8.9  1  0  0  0
642          0  1.6  0  0  0  0
643          1  9.2  1  0  1  0
644          0  0.4  0  0  0  0
645          1  7.5  0  1  1  0
646          0  0.7  0  0  0  0
647          0 -1.6  0  0  0  0
648          1  8.3  0  0  1  0
649          1  6.2  0  1  1  0
650          1  9.3  0  0  1  0
651          1  6.1  0  1  0  0
652          1  8.1  0  1  1  1
653          0  2.3  0  0  0  0
654          1  2.7  0  0  1  1
655          0  4.8  0  0  0  0
656          0 -0.9  0  0  0  0
657          0  0.3  0  0  0  0
658          1  5.1  0  0  0  1
659          1  7.0  0  0  0  0
660          1  8.4  0  0  1  0
661          0  2.5  0  0  0  0
662          1  7.6  1  1  1  0
663          0 -1.3  0  0  0  0
664          1  5.5  1  0  1  1
665          1  2.3  0  0  1  0
666          1  5.1  0  1  0  1
667          1  9.0  0  0  0  0
668          0  0.4  0  0  0  0
669          1  2.4  0  0  1  1
670          1  6.1  0  0  1  1
671          1  7.2  1  1  0  1
672          1  4.3  1  0  0  0
673          1  7.9  1  1  0  1
674          1  4.3  1  0  1  1
675          1  4.0  1  1  1  1
676          1  3.0  1  0  1  0
677          0  2.3  0  0  0  0
678          0 -0.5  0  0  0  0
679          0  1.6  0  0  0  0
680          0  1.3  0  0  0  0
681          1  7.2  0  0  1  1
682          1  7.3  0  0  1  1
683          0 -0.3  0  0  0  0
684          1  4.2  1  0  1  0
685          0  5.2  0  0  0  0
686          1  4.1  0  1  0  1
687          1  2.6  0  0  0  0
688          0  3.1  0  0  0  0
689          0 -1.9  0  0  0  0
690          1  9.0  0  0  1  0
691          0 -1.0  0  0  0  0
692          1  4.1  0  1  0  1
693          1  7.8  1  0  0  1
694          1  5.2  0  0  1  1
695          1  3.1  1  1  0  1
696          1  4.7  0  0  0  0
697          1  7.5  0  0  0  0
698          0  0.0  0  0  0  0
699          1  9.6  0  1  0  0
700          1  3.7  0  0  0  0
701          1  9.2  0  0  0  0
702          1  8.8  0  1  1  0
703          1  7.0  0  1  0  1
704          1  6.1  1  1  0  0
705          1  5.8  0  0  1  0
706          0 -1.1  0  0  0  0
707          1  3.1  0  0  1  0
708          1  4.4  1  1  0  0
709          1  9.3  0  0  1  1
710          1  6.5  0  0  0  0
711          1  6.7  0  1  1  1
712          1  3.6  0  0  1  0
713          0 -0.6  0  0  0  0
714          1  7.4  0  1  1  1
715          1  3.3  0  1  1  0
716          0  3.2  0  0  0  0
717          0 -1.7  0  0  0  0
718          0 -0.2  0  0  0  0
719          1  3.1  1  0  0  1
720          1  7.2  0  0  0  1
721          0 -1.9  0  0  0  0
722          1  5.2  0  0  1  1
723          1  8.9  0  0  0  1
724          1  6.5  1  0  0  1
725          0  1.2  0  0  0  0
726          1  8.2  0  0  0  0
727          0  2.0  0  0  0  0
728          1  4.9  1  1  0  1
729          1  3.2  0  1  0  0
730          0 -1.4  0  0  0  0
731          1  6.8  0  0  0  1
732          1  4.6  1  0  0  0
733          1  7.0  0  0  1  0
734          0 -1.4  0  0  0  0
735          1  6.6  0  1  1  0
736          0  1.6  0  0  0  0
737          0  1.4  0  0  0  0
738          1  8.0  0  1  0  1
739          0 -1.0  0  0  0  0
740          0 -1.5  0  0  0  0
741          1  2.2  0  0  0  0
742          0  4.5  0  0  0  0
743          1  5.3  1  0  0  1
744          0  1.3  0  0  0  0
745          0  0.5  0  0  0  0
746          1  2.6  1  0  0  0
747          1  3.7  0  1  0  0
748          1  8.0  1  0  1  0
749          0 -0.5  0  0  0  0
750          1  6.1  1  0  1  0
751          1  4.0  0  0  1  0
752          1  8.8  0  0  1  1
753          1  4.6  0  0  0  0
754          0 -0.5  0  0  0  0
755          1  3.3  0  0  0  0
756          0  0.3  0  0  0  0
757          1  3.2  1  0  0  0
758          0  0.7  0  0  0  0
759          1  9.5  0  1  0  0
760          1  3.4  0  1  0  0
761          1  7.3  0  0  0  0
762          0 -0.1  0  0  0  0
763          1  8.4  1  1  1  0
764          0  0.5  0  0  0  0
765          0  0.1  0  0  0  0
766          0  0.0  0  0  0  0
767          1  4.8  1  1  1  0
768          1  6.7  0  0  1  0
769          1  8.5  0  0  1  0
770          1  6.5  0  0  1  1
771          0  3.7  0  0  0  0
772          1  7.8  0  0  1  0
773          0 -1.8  0  0  0  0
774          1 10.0  0  1  1  0
775          1  5.6  0  0  0  0
776          1  3.1  1  0  0  1
777          0 -1.7  0  0  0  0
778          1  7.0  0  1  0  0
779          0  0.5  0  0  0  0
780          1 10.0  1  0  0  0
781          1  8.9  1  1  0  1
782          1  6.5  0  0  0  0
783          1  6.8  0  1  0  0
784          1  3.7  0  0  1  0
785          1  8.4  0  0  1  0
786          0  0.0  0  0  0  0
787          1  5.4  1  1  1  0
788          0  1.5  0  0  0  0
789          1  3.5  1  0  1  1
790          0 -1.5  0  0  0  0
791          0  0.1  0  0  0  0
792          0 -1.3  0  0  0  0
793          1  9.3  1  0  0  0
794          0  2.1  0  0  0  0
795          1  4.2  1  0  0  0
796          1  5.5  1  0  0  0
797          0  0.8  0  0  0  0
798          1  4.2  1  0  0  1
799          1  7.7  0  0  0  0
800          0  2.2  0  0  0  0
801          1  8.3  1  0  1  1
802          0 -1.6  0  0  0  0
803          1  9.7  0  0  1  0
804          1  6.9  0  1  0  0
805          0  1.3  0  0  0  0
806          1  6.1  0  0  0  0
807          0  2.2  0  0  0  0
808          1  9.4  0  0  0  0
809          1  2.1  1  1  0  1
810          0 -1.6  0  0  0  0
811          0  2.2  0  0  0  0
812          1  2.6  1  1  1  1
813          1  2.3  0  1  0  0
814          1  9.5  0  0  1  0
815          0  2.6  0  0  0  0
816          1  4.6  0  0  0  0
817          1  9.1  0  1  1  1
818          1  9.0  1  1  0  0
819          0  0.9  0  0  0  0
820          1  6.6  0  0  0  1
821          0  2.2  0  0  0  0
822          1  4.7  0  0  1  0
823          1  6.9  0  1  0  1
824          1  7.8  0  0  0  0
825          1  8.4  1  0  1  1
826          0 -1.6  0  0  0  0
827          0  0.6  0  0  0  0
828          0  2.4  0  0  0  0
829          1  1.7  1  0  0  0
830          1  6.7  0  1  1  0
831          1  6.4  0  0  1  0
832          1  8.9  0  1  0  0
833          1  8.1  0  0  1  1
834          1  7.3  0  0  1  1
835          0  2.8  0  0  0  0
836          1  4.9  1  1  1  1
837          0 -1.1  0  0  0  0
838          1  8.5  1  1  0  0
839          1  9.5  0  1  0  0
840          1  4.1  0  0  0  0
841          1  9.1  0  1  0  1
842          0 -0.4  0  0  0  0
843          1  0.9  1  0  0  0
844          0  3.9  0  0  0  0
845          1  3.7  1  1  0  0
846          1  3.2  0  0  0  0
847          0 -1.5  0  0  0  0
848          1  5.7  0  1  0  0
849          1  6.6  0  0  1  0
850          0  2.2  0  0  0  0
851          1  9.4  0  1  1  0
852          1  6.9  1  1  0  1
853          0 -1.4  0  0  0  0
854          1  9.8  0  1  0  0
855          0  0.6  0  0  0  0
856          0 -1.6  0  0  0  0
857          0  1.1  0  0  0  0
858          1  6.6  0  0  1  1
859          0  1.0  0  0  0  0
860          0  0.8  0  0  0  0
861          0 -1.7  0  0  0  0
862          0  1.2  0  0  0  0
863          1  6.3  0  0  1  1
864          0 -1.6  0  0  0  0
865          0 -1.2  0  0  0  0
866          1  2.8  1  1  1  1
867          1  3.9  0  1  0  1
868          1  5.6  1  0  0  1
869          1  6.7  1  0  0  0
870          0 -1.1  0  0  0  0
871          0  3.1  0  0  0  0
872          1  9.7  0  0  0  0
873          1  7.8  0  0  0  1
874          0  0.7  0  0  0  0
875          1  3.9  0  1  0  1
876          0 -1.9  0  0  0  0
877          0  1.1  0  0  0  0
878          1  3.5  0  0  0  0
879          1  6.9  0  0  0  1
880          1  9.9  1  0  0  0
881          0  2.0  0  0  0  0
882          1  9.3  0  1  0  1
883          1  9.5  0  0  0  1
884          1  8.8  1  0  1  0
885          1  3.9  0  1  0  1
886          1  7.4  1  1  0  1
887          1  7.6  0  0  0  0
888          1  6.1  0  0  1  1
889          1  5.0  1  0  1  0
890          0  2.0  0  0  0  0
891          0 -2.0  0  0  0  0
892          0 -1.2  0  0  0  0
893          0 -1.0  0  0  0  0
894          0 -1.8  0  0  0  0
895          1  2.0  0  1  0  1
896          0 -0.6  0  0  0  0
897          1  5.1  1  0  0  0
898          0 -1.6  0  0  0  0
899          0 -1.9  0  0  0  0
900          0 -0.1  0  0  0  0
901          1  8.0  0  0  0  1
902          1  7.2  0  0  0  1
903          0  1.3  0  0  0  0
904          0  0.3  0  0  0  0
905          0  0.7  0  0  0  0
906          0 -1.3  0  0  0  0
907          0 -1.3  0  0  0  0
908          0 -0.2  0  0  0  0
909          0 -1.1  0  0  0  0
910          0 -1.5  0  0  0  0
911          1  4.3  1  0  1  1
912          1  7.5  1  0  0  0
913          1  6.3  0  0  1  0
914          0 -1.2  0  0  0  0
915          0 -1.8  0  0  0  0
916          1  3.3  0  0  1  0
917          0 -0.1  0  0  0  0
918          1  6.6  0  1  0  1
919          1  6.4  0  0  0  0
920          1  8.6  1  1  0  0
921          0  1.9  0  0  0  0
922          1  9.7  0  1  0  0
923          1  9.8  0  0  0  0
924          0 -1.5  0  0  0  0
925          1  8.7  0  0  0  1
926          1  7.9  1  1  1  0
927          1  6.7  1  1  0  1
928          0  1.5  0  0  0  0
929          1  4.0  1  0  1  0
930          0  3.1  0  0  0  0
931          1  5.3  0  0  0  0
932          1  9.1  0  0  1  1
933          0  0.9  0  0  0  0
934          0  1.3  0  0  0  0
935          1  6.8  0  0  1  1
936          1  7.0  1  0  0  0
937          1  9.2  0  0  0  0
938          1  3.6  0  0  0  1
939          1  8.3  0  1  0  0
940          0  1.7  0  0  0  0
941          0  0.5  0  0  0  0
942          1  9.0  0  0  1  1
943          0 -1.4  0  0  0  0
944          1  2.9  0  1  0  1
945          1  3.5  1  0  0  0
946          1  3.0  1  0  0  1
947          1  6.0  1  1  0  0
948          1  7.1  0  0  1  0
949          1  8.9  0  1  1  0
950          1  7.8  0  0  1  1
951          0 -0.9  0  0  0  0
952          0  0.1  0  0  0  0
953          1  5.7  1  0  0  0
954          1  8.5  0  0  1  1
955          1  5.1  0  0  0  1
956          0  1.1  0  0  0  0
957          1  8.6  1  1  1  0
958          0  0.3  0  0  0  0
959          1  3.9  0  0  0  0
960          0 -1.9  0  0  0  0
961          1  2.3  0  0  0  1
962          1  3.3  1  1  1  0
963          0 -0.5  0  0  0  0
964          1  5.5  0  1  0  0
965          0  1.6  0  0  0  0
966          0  0.9  0  0  0  0
967          1  2.3  1  0  1  1
968          1  8.7  1  1  1  0
969          1  9.9  0  0  1  0
970          1  6.8  1  0  1  1
971          1  9.9  0  1  0  1
972          1  4.5  0  0  1  1
973          1  3.2  0  1  0  0
974          1  9.6  0  0  0  0
975          0 -0.2  0  0  0  0
976          0 -1.2  0  0  0  0
977          0 -1.7  0  0  0  0
978          1  5.3  0  0  0  0
979          1  6.4  0  0  0  1
980          1  7.6  1  0  0  1
981          0 -0.3  0  0  0  0
982          0 -0.1  0  0  0  0
983          1  9.9  0  1  0  0
984          1  2.8  0  0  1  1
985          0  0.3  0  0  0  0
986          1  3.7  1  0  0  1
987          1  4.5  0  1  1  0
988          0  1.9  0  0  0  0
989          1 10.0  1  1  0  1
990          1  4.3  0  0  1  0
991          0 -0.4  0  0  0  0
992          1  3.3  0  0  0  0
993          1  5.4  1  0  0  0
994          0  0.4  0  0  0  0
995          0 -0.4  0  0  0  0
996          1  7.3  0  0  0  0
997          1  5.6  1  1  0  0
998          0  1.4  0  0  0  0
999          0  0.3  0  0  0  0
1000         0  1.2  0  0  0  0

\[\begin{equation} Y_i \sim Bernoulli(\Psi_i) \end{equation}\] \[\begin{equation} logit(\Psi_i) = \beta_0 + \beta_1X1_i \end{equation}\]

\[~\]

\[\begin{equation} h_{ij}|Y_i \sim Bernoulli(Y_ip_{ij}) \end{equation}\] \[\begin{equation} logit(p_{ij}) = \alpha_0 + \alpha_1X2_{ij} \end{equation}\]

\[~\] \(h_{ij}\) = detección / no detección de la especie en la celda \(i\) en la ocasión \(j\)

\(p_{ij}\) = probabilidad de detección en la celda en la celda \(i\) en la ocasión \(j\)

\[~\]

\[\begin{equation} Y_i \sim Bernoulli(\Psi_i) \end{equation}\] \[\begin{equation} logit(\Psi_i) = \beta_0 + \beta_1X1_i \end{equation}\]

\[~\]

\(i\) = sitios de muestreo (celdas)

\(Y_{i}\) = Presencia/ausencia de la especie en la celda \(i\) (0/1)

\(\Psi_{i}\) = probabilidad de presencia de la espeice en la celda \(i\)

\(\beta_0\) y \(\beta_1\) = coeficientes para la \(\Psi_i\)

\(X1_i\) = Variables predictoras para la probabilidad de presencia de la especie

\[\begin{equation} Y_i \sim Bernoulli(\Psi_i) \end{equation}\] \[\begin{equation} logit(\Psi_i) = \beta_0 + \beta_1X1_i \end{equation}\] \[\begin{equation} h_{ij}|Y_i \sim Bernoulli(Y_ip_{ij}) \end{equation}\] \[\begin{equation} logit(p_{ij}) = \alpha_0 + \alpha_1X2_{ij} \end{equation}\]

\[~\]

\(j\) = ocasiones de muestreo

\(h_{ij}\) = Detección/no detección de la especie en la celda \(i\) en la ocasión \(j\)

\(p_{ij}\) = probabilidad de detección de la espeice en la celda \(i\) en la ocasión \(j\)

\(\alpha_0\) y \(\alpha_1\) = coeficientes para la \(p_{ij}\)

\(X2_{ij}\) = Variables predictoras para la probabilidad de detección de la especie en la celda \(i\) en la ocasión \(j\)

Asunciones del modelo

  • La ocupación de un sitio no varía durante el periodo de muestreo (población cerrada, no hay colonización ni extinción)
  • Las detecciones / no detecciones son independientes
  • No hay falsos positivos
  • No existe heterogeneidad no modelada

A modelizar!

Caso práctico

Queremos modelizar la ocupación (probabilidad de presencia) de una especie a partir de datos de cámaras trampa. Nuestro área de estudio es una zona montañosa dividida en una malla de 50x50 celdas. Sabemos que nuestra especie utiliza mayormente el hábitat de matorral de los fondos de valle de nuestro área de estudio. Disponemos de un total de 100 cámaras de fototrampeo que hemos dispuesto aleatoriamente en nuestro área de estudio que han estado activas durante 7 noches utilizando una lata de sardinas como atrayente. De las 100 cámaras, 47 de ellas son de la marca A y 53 de la marca B.

# Instalamos y cargamos las librerías que vamos a utilizar.
#install.packages("terra")
library(terra)
library(nimble)
library(MCMCvis)
library(tidyverse)

# Leemos nuestros datos en formato CVS
datos <- read.csv("https://raw.githubusercontent.com/jabiologo/web/master/tutorials/tallerSECEM_files/occuDatos.csv")

# Le pedimos a R que nos muestre nuestros datos.
datos
      id marca o1 o2 o3 o4 o5 o6 o7 dia1 dia2 dia3 dia4 dia5 dia6 dia7
1    593     A  0  0  0  0  0  0  0    1    2    3    4    5    6    7
2   1942     B  0  0  0  0  0  0  0    1    2    3    4    5    6    7
3   1945     A  0  0  0  1  0  0  0    1    2    3    4    5    6    7
4    253     B  0  0  0  0  0  0  0    1    2    3    4    5    6    7
5   2152     A  0  0  0  0  0  0  0    1    2    3    4    5    6    7
6   1528     A  0  0  0  0  0  0  0    1    2    3    4    5    6    7
7    408     B  0  0  0  1  0  0  0    1    2    3    4    5    6    7
8   1798     B  0  0  0  0  0  0  0    1    2    3    4    5    6    7
9    616     B  1  1  0  0  1  0  0    1    2    3    4    5    6    7
10   378     A  0  0  0  0  0  0  0    1    2    3    4    5    6    7
11  1050     B  0  0  0  0  0  0  0    1    2    3    4    5    6    7
12   769     A  0  0  0  0  0  0  0    1    2    3    4    5    6    7
13  1712     A  0  0  0  0  0  0  0    1    2    3    4    5    6    7
14   514     A  0  0  0  0  0  0  0    1    2    3    4    5    6    7
15  1777     B  0  0  0  0  0  0  0    1    2    3    4    5    6    7
16  1465     B  0  0  0  0  0  0  0    1    2    3    4    5    6    7
17  1585     A  0  0  0  0  0  0  0    1    2    3    4    5    6    7
18  1533     A  0  0  1  0  0  0  0    1    2    3    4    5    6    7
19  1172     A  0  0  0  0  0  0  0    1    2    3    4    5    6    7
20    73     B  0  0  0  0  0  0  0    1    2    3    4    5    6    7
21  2332     B  0  0  0  0  0  0  0    1    2    3    4    5    6    7
22  1686     A  0  0  0  0  0  0  0    1    2    3    4    5    6    7
23  1128     A  0  0  0  0  0  0  0    1    2    3    4    5    6    7
24   166     B  0  0  0  0  0  0  0    1    2    3    4    5    6    7
25  1233     B  0  0  0  0  0  0  0    1    2    3    4    5    6    7
26   971     A  0  0  0  0  0  0  0    1    2    3    4    5    6    7
27  1661     B  1  0  0  0  0  0  1    1    2    3    4    5    6    7
28  2192     B  0  1  1  1  1  1  0    1    2    3    4    5    6    7
29  2155     A  0  0  0  0  0  0  0    1    2    3    4    5    6    7
30  2422     B  0  0  0  0  0  0  0    1    2    3    4    5    6    7
31   176     A  0  0  0  0  0  0  0    1    2    3    4    5    6    7
32  1836     B  0  0  0  0  0  0  0    1    2    3    4    5    6    7
33  2389     A  1  1  1  0  1  0  0    1    2    3    4    5    6    7
34    64     B  0  0  0  0  0  0  0    1    2    3    4    5    6    7
35  1444     A  0  0  0  0  0  0  0    1    2    3    4    5    6    7
36   612     B  0  0  0  1  0  0  0    1    2    3    4    5    6    7
37  1192     B  0  0  0  0  0  0  0    1    2    3    4    5    6    7
38    11     B  1  1  1  0  1  1  0    1    2    3    4    5    6    7
39  1316     B  0  1  0  0  0  0  0    1    2    3    4    5    6    7
40  1161     B  1  1  0  0  0  1  0    1    2    3    4    5    6    7
41   459     A  0  0  0  1  0  0  0    1    2    3    4    5    6    7
42  1238     B  0  0  0  0  0  0  0    1    2    3    4    5    6    7
43  1170     B  0  0  0  0  0  0  0    1    2    3    4    5    6    7
44   579     B  0  0  0  0  0  0  0    1    2    3    4    5    6    7
45  2248     B  1  1  0  0  0  0  0    1    2    3    4    5    6    7
46    81     A  0  0  0  0  0  0  0    1    2    3    4    5    6    7
47  1756     A  1  0  0  0  0  0  0    1    2    3    4    5    6    7
48   737     B  0  0  0  0  0  0  0    1    2    3    4    5    6    7
49  1536     A  0  0  0  0  0  0  0    1    2    3    4    5    6    7
50  2345     B  1  0  0  0  0  0  0    1    2    3    4    5    6    7
51  1610     A  0  0  0  0  0  0  0    1    2    3    4    5    6    7
52  1240     B  0  0  0  0  0  0  0    1    2    3    4    5    6    7
53  1788     A  0  0  0  0  0  0  0    1    2    3    4    5    6    7
54   648     B  0  0  0  0  0  0  0    1    2    3    4    5    6    7
55  1002     B  1  0  0  0  0  0  0    1    2    3    4    5    6    7
56  1124     B  0  0  0  0  0  0  0    1    2    3    4    5    6    7
57   827     A  0  0  0  0  0  0  0    1    2    3    4    5    6    7
58   965     A  1  0  1  1  0  1  0    1    2    3    4    5    6    7
59   555     A  0  0  0  0  0  0  0    1    2    3    4    5    6    7
60  2374     B  0  0  0  0  0  0  0    1    2    3    4    5    6    7
61  2329     B  0  0  0  0  0  0  0    1    2    3    4    5    6    7
62   964     B  0  1  1  0  0  0  0    1    2    3    4    5    6    7
63  1514     A  0  0  0  0  0  0  0    1    2    3    4    5    6    7
64  2478     A  0  0  0  0  0  0  0    1    2    3    4    5    6    7
65   248     B  0  0  0  0  0  0  0    1    2    3    4    5    6    7
66  1096     A  0  0  0  0  0  0  0    1    2    3    4    5    6    7
67  2209     A  0  0  0  0  0  0  0    1    2    3    4    5    6    7
68  2427     A  0  0  0  0  0  0  0    1    2    3    4    5    6    7
69   471     A  0  0  0  1  0  0  0    1    2    3    4    5    6    7
70   911     B  0  0  0  0  0  0  0    1    2    3    4    5    6    7
71  1293     B  0  0  0  0  0  0  0    1    2    3    4    5    6    7
72  1280     B  1  1  1  0  0  0  0    1    2    3    4    5    6    7
73  1980     B  1  0  0  0  0  0  1    1    2    3    4    5    6    7
74  1200     A  1  0  0  0  0  0  0    1    2    3    4    5    6    7
75  1782     B  0  0  1  1  0  1  0    1    2    3    4    5    6    7
76  1415     A  0  0  1  0  1  0  0    1    2    3    4    5    6    7
77   351     B  1  1  1  0  0  0  0    1    2    3    4    5    6    7
78   249     B  0  0  0  0  0  0  0    1    2    3    4    5    6    7
79  2431     B  0  0  0  0  0  0  0    1    2    3    4    5    6    7
80  1271     B  1  1  1  1  0  0  0    1    2    3    4    5    6    7
81  1572     A  0  0  0  0  0  0  0    1    2    3    4    5    6    7
82  1102     A  0  0  0  0  0  0  0    1    2    3    4    5    6    7
83   273     B  1  0  0  0  0  0  0    1    2    3    4    5    6    7
84   481     B  1  0  0  1  0  0  0    1    2    3    4    5    6    7
85   865     A  1  0  1  0  1  0  0    1    2    3    4    5    6    7
86   452     B  1  1  1  0  0  1  0    1    2    3    4    5    6    7
87  2225     A  1  0  1  0  0  0  0    1    2    3    4    5    6    7
88   934     A  0  0  0  0  0  0  0    1    2    3    4    5    6    7
89  1424     A  0  0  0  0  0  0  0    1    2    3    4    5    6    7
90  1143     A  0  0  0  0  0  0  0    1    2    3    4    5    6    7
91  2303     B  1  1  0  0  0  0  0    1    2    3    4    5    6    7
92   304     A  0  0  0  0  0  0  0    1    2    3    4    5    6    7
93   703     A  0  0  0  0  0  0  0    1    2    3    4    5    6    7
94  2175     A  0  0  0  0  0  0  0    1    2    3    4    5    6    7
95  1391     B  0  0  0  0  0  0  0    1    2    3    4    5    6    7
96  2020     B  1  0  0  0  0  0  0    1    2    3    4    5    6    7
97   296     B  0  0  0  0  0  0  0    1    2    3    4    5    6    7
98  2439     B  0  0  0  0  0  0  0    1    2    3    4    5    6    7
99   212     A  0  0  0  0  0  0  0    1    2    3    4    5    6    7
100  687     A  0  0  0  0  0  0  0    1    2    3    4    5    6    7

# Cargamos las capas raster correspondientes a nuestras covariables predictoras,
# en este caso elevación y porcentaje de vegetación arbustiva.
elev <- rast("https://github.com/jabiologo/web/raw/master/tutorials/tallerSECEM_files/elev.tif")
arbu <- rast("https://github.com/jabiologo/web/raw/master/tutorials/tallerSECEM_files/arbu.tif")
names(elev) <- "elev"
names(arbu) <- "arbu"

# Vamos a graficar estas capas para hacernos una idea de cómo son. Además,
# colocaremos encima las localizaciones de nuestros dos modelos de cámaras.
par(mfrow = c(1,2))
plot(elev, main = "Elevación")
points(xyFromCell(elev, datos$id[datos$marca == "A"]), col = "darkred", pch = 19)
points(xyFromCell(elev, datos$id[datos$marca == "B"]), col = "darkblue", pch = 19)
plot(arbu, main = "Porcentaje arbusto")

# En este paso estandarizaremos nuestras variables para que su media sea 0 y su
# desviación estándar 1. Esta es una práctica habitual en modelización que ayuda
# a ajustar los modelos de forma más efectiva. La fórmula es:
# valor escalado = (valor de la cov - valor medio de la cov)/ SD de la cov
datos$elev <- scale(elev[datos$id])[1:100]
datos$arbu <- scale(arbu[datos$id])[1:100]

# Inspeccionamos las primeras filas de nuestro juego de datos.
head(datos)
    id marca o1 o2 o3 o4 o5 o6 o7 dia1 dia2 dia3 dia4 dia5 dia6 dia7
1  593     A  0  0  0  0  0  0  0    1    2    3    4    5    6    7
2 1942     B  0  0  0  0  0  0  0    1    2    3    4    5    6    7
3 1945     A  0  0  0  1  0  0  0    1    2    3    4    5    6    7
4  253     B  0  0  0  0  0  0  0    1    2    3    4    5    6    7
5 2152     A  0  0  0  0  0  0  0    1    2    3    4    5    6    7
6 1528     A  0  0  0  0  0  0  0    1    2    3    4    5    6    7
         elev       arbu
1  0.55262104  1.4229936
2  0.37677981 -0.4942135
3  0.03575438  0.7839246
4 -0.80082361  0.9685444
5  0.29685197  0.3578785
6  0.35546572 -1.5735298

Vamos a pensar un poco sobre el posible modelo…

Sabemos que nuestra especie utiliza mayormente el hábitat de matorral de los fondos de valle de nuestro área de estudio. Disponemos de un total de 100 cámaras de fototrampeo que hemos dispuesto aleatoriamente en nuestro área de estudio que han estado activas durante 7 noches utilizando una lata de sardinas como atrayente. De las 100 cámaras, 47 de ellas son de la marca A y 53 de la marca B

\[\begin{equation} Y_i \sim Bernoulli(\Psi_i) \end{equation}\] \[\begin{equation} logit(\Psi_i) = \beta_0 + \beta_1X1_i \end{equation}\] \[\begin{equation} h_{ij}|Y_i \sim Bernoulli(Y_ip_{ij}) \end{equation}\] \[\begin{equation} logit(p_{ij}) = \alpha_0 + \alpha_1X2_{ij} \end{equation}\]

Vamos a pensar un poco más sobre el posible modelo…

\[\begin{equation} Y_i \sim Bernoulli(\Psi_i) \end{equation}\] \[\begin{equation} logit(\Psi_i) = \beta_0 + \beta_1X1_i \end{equation}\] \[\begin{equation} h_{ij}|Y_i \sim Bernoulli(Y_ip_{ij}) \end{equation}\] \[\begin{equation} logit(p_{ij}) = \alpha_0 + \alpha_1X2_{ij} \end{equation}\]

Vamos a pensar un poco más sobre el posible modelo…

\[\begin{equation} Y_i \sim Bernoulli(\Psi_i) \end{equation}\] \[\begin{equation} logit(\Psi_i) = \beta_0 + \beta_1Elev_i + \beta_2Arbu_i \end{equation}\] \[\begin{equation} h_{ij}|Y_i \sim Bernoulli(Y_ip_{ij}) \end{equation}\] \[\begin{equation} logit(p_{ij}) = \alpha_0 + \alpha_1Marca_{i} + \alpha_2Arbu_i + \alpha_3Dia_{ij} \end{equation}\]

Traducción a Nimble

\[\begin{equation} Y_i \sim Bernoulli(\Psi_i) \end{equation}\] \[\begin{equation} logit(\Psi_i) = \beta_0 + \beta_1Elev_i + \beta_2Arbu_i \end{equation}\] \[\begin{equation} h_{ij}|Y_i \sim Bernoulli(Y_ip_{ij}) \end{equation}\] \[\begin{equation} logit(p_{ij}) = \alpha_0 + \alpha_1Marca_{i} + \alpha_2Arbu_i + \alpha_3Dia_{ij} \end{equation}\]
# Likelihood
  for (i in 1:nsitios) {
    Y[i] ~ dbern(psi[i]) 
    logit(psi[i]) <- b0 + b1*elev[i] + b2*arbu[i]
    for (j in 1:nocasiones) {
      hdet[i,j] ~ dbern(Y[i] * p[i,j]) 
      logit(p[i,j]) <- a0 + a1*marca[i] + a2*arbu[i] + a3*dia[i,j]
    }
  }

Preparamos nuestros datos para dárselos a Nimble

my.data <- list(hdet = datos[,3:9])
my.constants <- list(elev = datos$elev,
                     arbu = datos$arbu,
                     marca = as.numeric(datos$marca =="A"),
                     dia = datos[,10:16],
                     nsitios = 100,
                     nocasiones = 7)
my.data$hdet
    o1 o2 o3 o4 o5 o6 o7
1    0  0  0  0  0  0  0
2    0  0  0  0  0  0  0
3    0  0  0  1  0  0  0
4    0  0  0  0  0  0  0
5    0  0  0  0  0  0  0
6    0  0  0  0  0  0  0
7    0  0  0  1  0  0  0
8    0  0  0  0  0  0  0
9    1  1  0  0  1  0  0
10   0  0  0  0  0  0  0
11   0  0  0  0  0  0  0
12   0  0  0  0  0  0  0
13   0  0  0  0  0  0  0
14   0  0  0  0  0  0  0
15   0  0  0  0  0  0  0
16   0  0  0  0  0  0  0
17   0  0  0  0  0  0  0
18   0  0  1  0  0  0  0
19   0  0  0  0  0  0  0
20   0  0  0  0  0  0  0
21   0  0  0  0  0  0  0
22   0  0  0  0  0  0  0
23   0  0  0  0  0  0  0
24   0  0  0  0  0  0  0
25   0  0  0  0  0  0  0
26   0  0  0  0  0  0  0
27   1  0  0  0  0  0  1
28   0  1  1  1  1  1  0
29   0  0  0  0  0  0  0
30   0  0  0  0  0  0  0
31   0  0  0  0  0  0  0
32   0  0  0  0  0  0  0
33   1  1  1  0  1  0  0
34   0  0  0  0  0  0  0
35   0  0  0  0  0  0  0
36   0  0  0  1  0  0  0
37   0  0  0  0  0  0  0
38   1  1  1  0  1  1  0
39   0  1  0  0  0  0  0
40   1  1  0  0  0  1  0
41   0  0  0  1  0  0  0
42   0  0  0  0  0  0  0
43   0  0  0  0  0  0  0
44   0  0  0  0  0  0  0
45   1  1  0  0  0  0  0
46   0  0  0  0  0  0  0
47   1  0  0  0  0  0  0
48   0  0  0  0  0  0  0
49   0  0  0  0  0  0  0
50   1  0  0  0  0  0  0
51   0  0  0  0  0  0  0
52   0  0  0  0  0  0  0
53   0  0  0  0  0  0  0
54   0  0  0  0  0  0  0
55   1  0  0  0  0  0  0
56   0  0  0  0  0  0  0
57   0  0  0  0  0  0  0
58   1  0  1  1  0  1  0
59   0  0  0  0  0  0  0
60   0  0  0  0  0  0  0
61   0  0  0  0  0  0  0
62   0  1  1  0  0  0  0
63   0  0  0  0  0  0  0
64   0  0  0  0  0  0  0
65   0  0  0  0  0  0  0
66   0  0  0  0  0  0  0
67   0  0  0  0  0  0  0
68   0  0  0  0  0  0  0
69   0  0  0  1  0  0  0
70   0  0  0  0  0  0  0
71   0  0  0  0  0  0  0
72   1  1  1  0  0  0  0
73   1  0  0  0  0  0  1
74   1  0  0  0  0  0  0
75   0  0  1  1  0  1  0
76   0  0  1  0  1  0  0
77   1  1  1  0  0  0  0
78   0  0  0  0  0  0  0
79   0  0  0  0  0  0  0
80   1  1  1  1  0  0  0
81   0  0  0  0  0  0  0
82   0  0  0  0  0  0  0
83   1  0  0  0  0  0  0
84   1  0  0  1  0  0  0
85   1  0  1  0  1  0  0
86   1  1  1  0  0  1  0
87   1  0  1  0  0  0  0
88   0  0  0  0  0  0  0
89   0  0  0  0  0  0  0
90   0  0  0  0  0  0  0
91   1  1  0  0  0  0  0
92   0  0  0  0  0  0  0
93   0  0  0  0  0  0  0
94   0  0  0  0  0  0  0
95   0  0  0  0  0  0  0
96   1  0  0  0  0  0  0
97   0  0  0  0  0  0  0
98   0  0  0  0  0  0  0
99   0  0  0  0  0  0  0
100  0  0  0  0  0  0  0

Preparamos nuestros datos para dárselos a Nimble

my.data <- list(hdet = datos[,3:9])
my.constants <- list(elev = datos$elev,
                     arbu = datos$arbu,
                     marca = as.numeric(datos$marca =="A"),
                     dia = datos[,10:16],
                     nsitios = 100,
                     nocasiones = 7)
my.constants$elev
  [1]  0.552621041  0.376779807  0.035754384 -0.800823606  0.296851974
  [6]  0.355465718 -2.340766531 -1.253747996 -0.614325328 -0.086801627
 [11] -0.795495084 -0.491769317  1.277300064 -1.498860019 -0.198700594
 [16] -0.177386505  0.675177052  0.499335818  0.408750940 -1.045935629
 [21]  0.536635474  0.307509018  0.701819663 -0.843451784  1.303942675
 [26] -0.406512961  0.851018286  0.216924140  1.085473264  1.506426520
 [31] -0.832794740  0.163638918  0.190281529 -1.003307451  0.302180496
 [36] -1.408275141  1.074816219 -1.184477207 -1.973098497 -1.530831152
 [41] -1.909156230  1.810152287 -0.353227739 -0.204029116  0.307509018
 [46] -0.630310895 -0.294613994  1.170729620  1.224014842  0.291523451
 [51]  0.270209362  1.549054698  0.440722074  0.541963996 -0.704910206
 [56]  0.680505574 -0.001545271 -1.552145241 -0.635639417  0.973574297
 [61]  0.856346808 -1.759957608  0.430065029  0.270209362  0.856346808
 [66]  0.270209362  1.335913809  0.536635474 -0.891408484 -1.706672386
 [71]  0.648534441  0.264880840  0.270209362 -0.822137695  0.057068473
 [76] -0.912722573 -1.131191985  0.685834096  0.334151629 -0.880751440
 [81]  1.751538543 -0.465126706 -0.225343205 -0.603668284 -1.530831152
 [86] -1.184477207  1.186715186  0.824375674  0.653862963  0.925617597
 [91] -0.422498528 -0.593011239 -1.392289574  1.266643020  1.309271198
 [96]  1.682267754  1.085473264  0.462036163 -2.378066187  1.730224454

Preparamos nuestros datos para dárselos a Nimble

my.data <- list(hdet = datos[,3:9])
my.constants <- list(elev = datos$elev,
                     arbu = datos$arbu,
                     marca = as.numeric(datos$marca =="A"),
                     dia = datos[,10:16],
                     nsitios = 100,
                     nocasiones = 7)
my.constants$arbu
  [1]  1.422993573 -0.494213483  0.783924555  0.968544385  0.357878542
  [6] -1.573529831  0.684513710  2.488109146 -0.337996287 -0.366399462
 [11] -0.238585984 -1.928568175  0.684513710 -0.465810307 -0.835049968
 [16]  0.670312393  1.593412087  1.110559722  0.499893880  0.201661888
 [21] -0.636228820  2.260883739  0.897536716 -1.829157330 -0.068167470
 [26] -1.104879326  0.712916886 -1.885963682  0.400483035 -0.962863988
 [31] -1.261095980  1.991054923 -1.332103649 -0.551019293  0.826529048
 [36]  0.783924555 -0.480011624  1.366187763  0.301072732 -1.743948344
 [41]  0.940141751 -0.337996287 -0.536817976 -0.636228820  1.948450430
 [46] -2.169994357 -0.281190477 -0.579422469  1.593412087  0.386281718
 [51]  0.045444691 -0.238585984  0.783924555  0.059646550  0.585103407
 [56]  1.124761581  0.059646550 -0.096570646 -0.153376456 -0.011361119
 [61]  1.011149420 -0.465810307  0.613506041  0.045444691 -0.096570646
 [66]  0.329475366  0.002840198 -1.601933007 -0.337996287 -0.380601321
 [71]  0.783924555 -0.366399462 -1.218491487 -0.451608990  0.073847867
 [76] -0.124973280 -0.437407131 -0.238585984  0.783924555 -1.332103649
 [81]  0.272669556 -1.914366858  0.272669556 -1.289499156 -1.857560506
 [86] -0.252787301 -0.195980949 -0.252787301 -1.005468481 -0.011361119
 [91]  0.570901548  1.309381412  0.073847867  0.343677225  1.153164757
 [96]  0.386281718  1.877442762 -1.772351520 -0.011361119  0.315274049

Preparamos nuestros datos para dárselos a Nimble

my.data <- list(hdet = datos[,3:9])
my.constants <- list(elev = datos$elev,
                     arbu = datos$arbu,
                     marca = as.numeric(datos$marca =="A"),
                     dia = datos[,10:16],
                     nsitios = 100,
                     nocasiones = 7)
my.constants$marca
  [1] 1 0 1 0 1 1 0 0 0 1 0 1 1 1 0 0 1 1 1 0 0 1 1 0 0 1 0 0 1 0 1 0 1 0 1 0 0
 [38] 0 0 0 1 0 0 0 0 1 1 0 1 0 1 0 1 0 0 0 1 1 1 0 0 0 1 1 0 1 1 1 1 0 0 0 0 1
 [75] 0 1 0 0 0 0 1 1 0 0 1 0 1 1 1 1 0 1 1 1 0 0 0 0 1 1

Preparamos nuestros datos para dárselos a Nimble

my.data <- list(hdet = datos[,3:9])
my.constants <- list(elev = datos$elev,
                     arbu = datos$arbu,
                     marca = as.numeric(datos$marca =="A"),
                     dia = datos[,10:16],
                     nsitios = 100,
                     nocasiones = 7)
my.constants$dia
    dia1 dia2 dia3 dia4 dia5 dia6 dia7
1      1    2    3    4    5    6    7
2      1    2    3    4    5    6    7
3      1    2    3    4    5    6    7
4      1    2    3    4    5    6    7
5      1    2    3    4    5    6    7
6      1    2    3    4    5    6    7
7      1    2    3    4    5    6    7
8      1    2    3    4    5    6    7
9      1    2    3    4    5    6    7
10     1    2    3    4    5    6    7
11     1    2    3    4    5    6    7
12     1    2    3    4    5    6    7
13     1    2    3    4    5    6    7
14     1    2    3    4    5    6    7
15     1    2    3    4    5    6    7
16     1    2    3    4    5    6    7
17     1    2    3    4    5    6    7
18     1    2    3    4    5    6    7
19     1    2    3    4    5    6    7
20     1    2    3    4    5    6    7
21     1    2    3    4    5    6    7
22     1    2    3    4    5    6    7
23     1    2    3    4    5    6    7
24     1    2    3    4    5    6    7
25     1    2    3    4    5    6    7
26     1    2    3    4    5    6    7
27     1    2    3    4    5    6    7
28     1    2    3    4    5    6    7
29     1    2    3    4    5    6    7
30     1    2    3    4    5    6    7
31     1    2    3    4    5    6    7
32     1    2    3    4    5    6    7
33     1    2    3    4    5    6    7
34     1    2    3    4    5    6    7
35     1    2    3    4    5    6    7
36     1    2    3    4    5    6    7
37     1    2    3    4    5    6    7
38     1    2    3    4    5    6    7
39     1    2    3    4    5    6    7
40     1    2    3    4    5    6    7
41     1    2    3    4    5    6    7
42     1    2    3    4    5    6    7
43     1    2    3    4    5    6    7
44     1    2    3    4    5    6    7
45     1    2    3    4    5    6    7
46     1    2    3    4    5    6    7
47     1    2    3    4    5    6    7
48     1    2    3    4    5    6    7
49     1    2    3    4    5    6    7
50     1    2    3    4    5    6    7
51     1    2    3    4    5    6    7
52     1    2    3    4    5    6    7
53     1    2    3    4    5    6    7
54     1    2    3    4    5    6    7
55     1    2    3    4    5    6    7
56     1    2    3    4    5    6    7
57     1    2    3    4    5    6    7
58     1    2    3    4    5    6    7
59     1    2    3    4    5    6    7
60     1    2    3    4    5    6    7
61     1    2    3    4    5    6    7
62     1    2    3    4    5    6    7
63     1    2    3    4    5    6    7
64     1    2    3    4    5    6    7
65     1    2    3    4    5    6    7
66     1    2    3    4    5    6    7
67     1    2    3    4    5    6    7
68     1    2    3    4    5    6    7
69     1    2    3    4    5    6    7
70     1    2    3    4    5    6    7
71     1    2    3    4    5    6    7
72     1    2    3    4    5    6    7
73     1    2    3    4    5    6    7
74     1    2    3    4    5    6    7
75     1    2    3    4    5    6    7
76     1    2    3    4    5    6    7
77     1    2    3    4    5    6    7
78     1    2    3    4    5    6    7
79     1    2    3    4    5    6    7
80     1    2    3    4    5    6    7
81     1    2    3    4    5    6    7
82     1    2    3    4    5    6    7
83     1    2    3    4    5    6    7
84     1    2    3    4    5    6    7
85     1    2    3    4    5    6    7
86     1    2    3    4    5    6    7
87     1    2    3    4    5    6    7
88     1    2    3    4    5    6    7
89     1    2    3    4    5    6    7
90     1    2    3    4    5    6    7
91     1    2    3    4    5    6    7
92     1    2    3    4    5    6    7
93     1    2    3    4    5    6    7
94     1    2    3    4    5    6    7
95     1    2    3    4    5    6    7
96     1    2    3    4    5    6    7
97     1    2    3    4    5    6    7
98     1    2    3    4    5    6    7
99     1    2    3    4    5    6    7
100    1    2    3    4    5    6    7

Escribimos el modelo

occu.mod <- nimbleCode({
  # Priors
  b0 ~ dnorm(mean = 0, sd = 1) 
  b1 ~ dnorm(mean = 0, sd = 1) 
  b2 ~ dnorm(mean = 0, sd = 1) 
  a0 ~ dnorm(mean = 0, sd = 1) 
  a1 ~ dnorm(mean = 0, sd = 1)
  a2 ~ dnorm(mean = 0, sd = 1)
  a3 ~ dnorm(mean = 0, sd = 1)
  
  # Likelihood
  for (i in 1:nsitios) {
    Y[i] ~ dbern(psi[i]) # True occupancy status
    logit(psi[i]) <- b0 + b1*elev[i] + b2*arbu[i]
    for (j in 1:nocasiones) {
      hdet[i,j] ~ dbern(Y[i] * p[i,j]) # Observed data
      logit(p[i,j]) <- a0 + a1*marca[i] + a2*arbu[i] + a3*dia[i,j]
    }
  }
  
})

Definimos el resto de elementos que nos faltan

initial.values <- list(b0 = rnorm(1,0,1),
                       b1 = rnorm(1, 0, 1),
                       b2 = rnorm(1, 0, 1),
                       a0 = rnorm(1,0,1),
                       a1 = rnorm(1,0,1),
                       a2 = rnorm(1,0,1),
                       a3 = rnorm(1,0,1),
                       Y = as.numeric(rowSums(my.data$hdet) > 0))

parameters.to.save <- c("b0", "b1", "b2", "a0", "a1", "a2", "a3")

n.iter <- 3000
n.burnin <- 200
n.chains <- 3
n.thin <- 1

Corremos nuestro MCMC

mcmc.output <- nimbleMCMC(code = occu.mod,     
                          data = my.data,  
                          constants = my.constants,
                          inits = initial.values,
                          monitors = parameters.to.save,
                          thin = n.thin,
                          niter = n.iter, 
                          nburnin = n.burnin, 
                          nchains = n.chains)
|-------------|-------------|-------------|-------------|
|-------------------------------------------------------|
|-------------|-------------|-------------|-------------|
|-------------------------------------------------------|
|-------------|-------------|-------------|-------------|
|-------------------------------------------------------|

Inspeccionamos los traceplots

MCMCtrace(mcmc.output, pdf = F, params = c("a0", "a1", "a2", "a3"))

Inspeccionamos los traceplots

MCMCtrace(mcmc.output, pdf = F, params = c("b0", "b1", "b2"))

Inspeccionamos el resumen del modelo

MCMCsummary(mcmc.output, round = 2)
    mean   sd  2.5%   50% 97.5% Rhat n.eff
a0  0.70 0.35  0.02  0.70  1.38 1.01   238
a1 -0.65 0.35 -1.34 -0.64  0.01 1.01   854
a2 -0.63 0.18 -0.98 -0.63 -0.25 1.01  1138
a3 -0.44 0.08 -0.62 -0.44 -0.29 1.01   269
b0 -0.40 0.30 -0.96 -0.41  0.22 1.00   882
b1 -1.03 0.32 -1.73 -1.01 -0.46 1.00  1028
b2  0.31 0.30 -0.23  0.30  0.95 1.01   827

\[~\]

# Likelihood
  for (i in 1:nsitios) {
    Y[i] ~ dbern(psi[i]) 
    logit(psi[i]) <- b0 + b1*elev[i] + b2*arbu[i]
    for (j in 1:nocasiones) {
      hdet[i,j] ~ dbern(Y[i] * p[i,j]) 
      logit(p[i,j]) <- a0 + a1*marca[i] + a2*arbu[i] + a3*dia[i,j]
    }
  }

Una vez hemos inspeccionado los traceplots y nos hemos asegurado que las cadenas convergen, podemos juntarlas y empezar a hacer predicciones.

mcmc.bind <- rbind(mcmc.output$chain1, mcmc.output$chain2, mcmc.output$chain3)

\[~\] Vamos a hacer la predicción de la detectabilidad en función de los días que lleve instalada la cámara. Para ello fijaremos el resto de variables a su media (porcentaje de arbustos = 0; cámara marca B).

pred.dia <- seq(from = 1, to = 7, by = 1)

pred.p <- matrix(NA, nrow = nrow(mcmc.bind), ncol = length(pred.dia))
for(i in 1:nrow(pred.p)){
  pred.p[i,] <- plogis(mcmc.bind[i,"a0"] + 
                       mcmc.bind[i,"a1"] * 0 +
                       mcmc.bind[i,"a2"] * pred.dia + 
                       mcmc.bind[i,"a3"] * 0 )
}

mean.p <- apply(pred.p, 2, mean) # extract mean
sd.p <- apply(pred.p, 2, sd) # extract sd
ci <- apply(pred.p, 2, quantile, c(0.1, 0.9)) # 80% CI

pred.p.results <- tibble(dia = pred.dia, 
                       mean = mean.p,
                       sd = sd.p,
                       cinf = ci[1,],
                       csup = ci[2,])

plot(pred.p.results$dia, pred.p.results$mean, type = "l", lwd = 3, col = "darkred",
     xlab = "Días desde que se instaló la cámara", ylab = "Probabilidad de detección")
lines(pred.p.results$dia, pred.p.results$cinf, lty = 2, col = "darkblue")
lines(pred.p.results$dia, pred.p.results$csup, lty = 2, col = "darkblue")

Predicciones sobre el mapa

Tenemos que tener en cuenta que hemos estandarizado nuestras variables (media 0 sd 1) para correr estos modelos. Por lo tanto, antes de realizar las predicciones sobre el mapa debemos estandarizar también nuestros rásters de la misma forma que lo hicimos con nuestros datosanteriormente

elevS <- (elev - 958.29) / 187.6693 
arbuS <- (arbu - 49.78) / 7.041493

Predicciones sobre el mapa

Vamos a hacer una predicción sólo sobre la media (no propagaremos la incertidumbre!). Para ello utilizaremos las medias de las distribuciones a posteriori obtenidas con MCMCsummary. Recordad que hay que hacer la inversa de logit!

prediccion <- exp(-0.41 - 1.01*elevS + 0.29*arbuS)/(1+exp(-0.41 - 1.01*elevS + 0.29*arbuS))
par(mfrow = c(1,3))
plot(elev, main = "Elevacion")
plot(arbu, main = "Arbusto")
plot(prediccion, main = "Probabilidad de ocupación media predicha")